
Being prepared for AITS Summit 2019, ©2019. Format: IEEE 1

Deep Neural Network Operators

Implementation Approach and Challenges

Gunjan Nandy

Machine Learning Engineer Intern

AI Tech System

Kolkata, India

gunjan.nandy1@gmail.com

Nikhil Tiwari

Machine Learning Engineer Intern

AI Tech System

Bhopal, India

nikhilcbse97@gmail.com

Hrishikesh Murali

Machine Learning Engineer Intern

AI Tech System

Bangalore, India

hrishi98.m@gmail.com

Subham Sarkar

Machine Learning Engineer Intern

AI Tech System

Kolkata, India

kingsubham27@gmail.com

Nalin Shani

Machine Learning Engineer Intern

AI Tech System

Delhi, India

nalinshani14@gmail.com

Vishal Yadav

Machine Learning Engineer Intern

AI Tech System

Indore, India

vvyy346@gmail.com

Abstract— Last few years have seen increasing upsurge in

variety of neural network giving rise to dedicated hardware to meet

their performance specification (i.e. latency and throughput). Every

new dedicated hardware needs a compiler that can take a high-level

specification of deep neural network and compile it into hardware

specific machine code taking advantage of performance driven

parallel features. Operators (aka layers) are hearts and mind of a

deep neural network (DNN). In this paper we highlight design of

operators as a pragmatic approach to compilation that enables the

generation of highly optimized code for multiple targets.

I. INTRODUCTION

Applications of deep learning models have been pervasive

in many branches of science ranging from difficult ones like

rocket science and brain surgery to easy ones like image and

speech recognition. Regardless of ease and orthogonality of

these skills, structures and modularity of these networks

remains remarkably homogeneous. Homogeneity of neural

networks is brought about by handful (less than 200) of

operators. In this paper, we discuss design, features and

challenges in implementation of neural network operators.

These operators are part of larger open source project Deep

Neural Network Compiler currently under development [4].

dnnCompiler is targeted towards devices with small

formfactor like microcontrollers, which are part of all sorts of

household devices: think appliances, cars, and toys. In fact,

there are around 30 billion microcontroller-powered devices

produced each year. They're cheap, require very little energy,

and are very reliable.

In section II, we discuss overall design of dnn compiler

with emphasis on operators. A small representative sample of

operators was chosen for discussion. Section III after that

discusses fusion, quantization, memory layout and scalability

of the operators and their design. In the end, we present

summary and future work of our project.

OVERVIEW

Popular deep neural networks with high accuracy have a

high need for computational power for inferencing, that is

generally not available on devices with low memory and low-

end CPUs. Industries spend a lot of monetary resources on the

hardware. Addressing this particular issue, we came up with

a solution– the Deep Neural Network Compiler. The compiler

turns neural networks into an executable bundled with model

parameters ready to run on embedded devices such as the

raspberry pi, odroid, arduino, risc-V and other controllers

with small form factor. The design of the Deep Neural

Network Compiler is pretty straight forward, it uses

ONNX3.0 [2] as a ProtoBuf format, which is directly

translated into a high-level compute graph with operators as

nodes and data flowing through these nodes as tensors. This

paper attempts to highlight operator design supported by

ONNX3.0 format [2]. These operators are being writing in

C++ for performance reasons. They are also ported to python

interface for quick testing and possibility of tuning compiler

in to a full framework with python interface. To achieve

performance objectives, we use a third-party linear algebra

library Eigen [1] available under Mozilla Public License. This

is a C++ template library for linear algebra: matrices, vectors,

numerical solvers, and related algorithms to perform the

Neural Network operations in a fast and an efficient manner.

II. DESIGN

Main difference between neural nets’ computation graph and

traditional compiler IR graph is the number of high-level

operators. Traditional compiler has a small and fixed set of

operators, whereas neural nets’ computation graph operators

are over 200 and new are being added every day. This dictates

our design choice of adding new operators decentralized and

independent of overall compiler design [4]. Addition of new

operator is likely to invariably give rise to optimization

opportunities not possible older set. This requirement

demands flexibility in design optimizations passes of high-

level computation graphs, since addition of new nodes may

demand new passes. In the next section, we discuss 3

operators as a sample of approximately 150 operators

supported in ONNX3.0 [2].

Design of operators in deep neural network compiler

plays an important role in performance, memory, scalability

and usability of DNN compiler. Addition of new operators

sometimes comes with new attributes. In the overall scheme

of things registration of new attribute must not come at the

expense of invalidation of supported operators set or

optimization passes. Similar to Tensorflow (with OpDef) and

Caffe2 (with OperatorSchema), we also plan to provide

registration scheme in future versions.

Operator Instance Normalization

Operator Instance Normalization [3] is expressed as

2

𝑦 = 𝑠𝑐𝑎𝑙𝑒.
𝑥 − 𝑚𝑒𝑎𝑛

√𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑒𝑝𝑠𝑖𝑙𝑜𝑛
+ 𝐵

where mean and variance are computed per instance per

channel (C).

 Inputs

a [float,double]: ND tensor (Nx Cx D1xD2…Dk)

Scale: 1D vector of dimension C.

B: 1D vector of dimension C.

Attr: epsilon – float

In case variance goes to zero and to avoid division by zero.

The formula for Mean is given by:

𝜇 =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

This can be calculated in a single pass through all the

elements.

The formula for Variance is given by:

𝑉𝑎𝑟(𝑋) =
1

𝑛
∑(𝑥𝑖 − 𝜇)2

𝑛

𝑖=1

According to this Mean of the elements in channel is

prerequisite for Variance calculation.

A bit of mathematics reveals that mean is not required for

Variance they can be calculated simultaneously.

𝑉𝑎𝑟(𝑋) =
1

𝑛
∑(𝑥𝑖 − 𝜇)2

𝑛

𝑖=1

= ∑(𝑥𝑖
2 − 2𝜇𝑥𝑖 + 𝜇2)

𝑛

𝑖=1

=
1

𝑛
∑ 𝑥𝑖

2

𝑛

𝑖=1

−
2𝜇

𝑛
∑ 𝑥𝑖 +

𝑛𝜇2

𝑛

𝑛

𝑖=1

= (
1

𝑛
∑ 𝑥𝑖

2

𝑛

𝑖=1

) − 𝜇2

And this formulation became part of dnn compiler operator

implementation. The operator is O(n) where n = Number of

elements in the tensor = N*C*D1…*Dk.

Algorithm

a.reshape([N,C,D1*D2…..*Dk]);

channel_size = N*D1*D2…..*Dk

sum=sq_sum=0

For channel in channels

 For element in channel

 sum=sum+element

 sq_sum=sq_sum+element*element

 end

 mean = sum/channel_size

 var = sq_sum - mean*mean

 For element in channel:

element = scale[channel]*(element -

mean)/sqrt(var+epsilon)+B[channel]

 end

end

Operator Gemm

Gemm is called General Matrix Multiplication, is given as

𝑌 = 𝛼𝐴𝐵 + 𝛽𝐶
Where A and B can optionally be transposed or hermitian-

conjugated inside the routine and all three matrices may be

strided. The ordinary matrix multiplication A B can be

performed by setting α to one and C to an all-zeros matrix of

the appropriate size.

Inputs

A of shape(M,K) if transA=0 or (K,M) if transA!=0

B of shape(K,N) if transB=0 or (N,K) if transB!=0

C of shape (M,N)

Attributes

transA (int) : defaut 0

transB (int) : defaut 0

alpha (float) : defaut 1.0

beta (float) : defaut 1.0

The matrix product C = AB (denoted without

multiplication signs or dots) is defined to be the n × p matrix

Such that

Gemm is general matrix multiplication, which takes 4

attributes, alpha and beta of type float, transA and transB of

type int. transA and transB shows if matrix A and matrix B

needs transposing before the operation. We have used Eigen

matrix multiplication to achieve this operator. All tensor

ranks should be of rank 2. Now apply this formula to compute

the output Y

 Y = alpha * A' * B' + beta * C]

where A' = transpose(A) if transA else A

 B' = transpose(B) if transB else B

Outputs

 matrix Y of shape (M,N), the same shape of the input

tensor.

 Algorithm

IF transA == 1

 a = a.T

IF transB == 1

 b = b.T

Y = alpha * (a * b) + beta * c

Time complexity is less than O(n3) because Gemm is very

data parallel as each of the n2 output elements is independent

of the rest.

Operator LpNormalization

LpNormalization is a matrix normalization technique that

takes axis and a constant p as an attribute which are of type

int respectively. Axis defines in which particular axis of

matrix we have to apply the normalization of the matrix and

value of p provides the information of norm to be used. Only

1 or 2 is supported as value for p.

Inputs

ND matrix (type-float tensor, double tensor)

3

Attributes

p (int): default 2 (onnx supports only 1 or 2)

axis (int): default -1 (last axis i.e. 1 since axis of int type)

For Normalization of matrix as per the p value taken as

attribute will require computation of L1 norm (p=1) or L2

norm (p=2) and formula to compute both is given by:

L1 norm:

L2 norm:

Normalization helps in scaling of the input data and features.

Algorithm:

For elements along the axis 0 or 1:

If p==1

 For element in matrix:

 sum=0

 sum=sum+abs(element)

 End

 For element in matrix:

 element=element/sum

 End

Else If p==2:

 For element in matrix:

 sum=0

 sum=element*element

 End

 For element in matrix:

 element=element/sqrt(sum)

 End

End

Outputs

ND matrix (type-float tensor,double tensor) after

applying LpNormalization.

Time complexity of the algorithm is O(n2) where n is no.

of elements in the input matrix.

Operator SoftMax

SoftMax is a function that takes as input a vector of K real

numbers, and normalizes it into a probability

distribution consisting of K probabilities proportional to the

exponentials of the input numbers. That is, prior to applying

SoftMax , some vector components could be negative, or

greater than one; and might not sum to 1; but after applying

SoftMax , each component will be in the interval {0,1}, and

the components will add up to 1, so that they can be

interpreted as probabilities. Furthermore, the larger input

components will correspond to larger probabilities. SoftMax

is often used in neural networks, to map the non-normalized

output of a network to a probability distribution over

predicted output classes.

Inputs -

The input tensor that's coerced into a 2D matrix of size

(ND)

Output:

 The output values with the same shape as input tensor.

Attributes:

 axis(int):default is 1

Formula:

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
exp (𝑥𝑖)

∑ exp (𝑥𝑗)𝑗

Diagrammatically:

Algorithm:

We apply the standard exponential function to each element

Zi of the input vector Z and normalize these values by

dividing by the sum of all these exponentials; this

normalization ensures that the sum of the components of the

output vector f(Z) is 1. (where f=sigmoid function).

If axis==1:

 For row in matrix:

 sum=0

 For col in matrix:

 sum=sum+exp(matrix[row][col])

 End

For col in matrix:

 matrix[row][col] =(exp(matrix[row][col]))/sum

 End

 End

 If axis==0:

 For col in matrix:

 sum=0

 For row in matrix:

 sum=sum+exp(matrix[col][row])

 End

For row in matrix:

 matrix[row][col] =(exp(matrix[col][row]))/sum

 End

 End

III. FEATURES

Operator Fusion

Operator fusion [7] is a popular technique to minimize the

off-chip data movement between layers by re-organizing two

or more adjacent operators into one. DNNC employs loosly

typed typed base operator with generic type information in

the compute graph. This design makes it easy to fuse two or

more operators painlessly with trivial operator type, tensor

shape and rank-checking.

https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Interval_(mathematics)
https://en.wikipedia.org/wiki/Artificial_neural_network

4

A. Quantization

Quantization, as introduced in [6] is a popular technique

for deep learning models to help reduce power consumption,

lower memory bandwidth, lower storage and higher

performance. Low precision (normal precision uses FP32)

can be used here, which uses FP16, INT8 and so on. Mixed

precision utilizes both FP32 and FP16 model. And mixed

precision is used as not all parameters or operators can be

formatted in FP16, to maintain accuracy. No matter the data

type, the DNNC can easily convert them, or we can change

them manually also, as DNNC uses C++ template as the

building block of its operators.

B. Memory Layout

There are many ways to represent the memory of a given

tensor in the computational graph. The most common data

layout choices are column major and row major [1].

Performance of DNN largely depends on memory operations

like, fetch, store, transportation and others. As the old saying

goes, a chain is as strong as its weakest link, memory or data

tiling or alignment of a network dominates the performance

of DNNs as measured by latency and throughput. We rely on

Eigen [1] to improve tensorization, reduce temporaries,

memory accesses and cache misses using latency hiding,

scheduling and other optimizations.

C. Scalability

The operators are implemented with Eigen Library in

C++, for performance reasons and memory optimization

across different devices. The interface is done with swig,

which helps us to build a C++ backend with python front end,

for easier testing and wider usage. And it is fairly easy to add

new operators as required. Add the operator in C++ which can

be extended from baseOperator package and connect it with

swig, which then can be accessed with python.

SUMMARY

By bringing deep learning models to tiny microcontrollers,

we can boost the intelligence of billions of devices that we

use in our lives, without relying on expensive hardware or

reliable internet connections. Imagine smart appliances that

can adapt to your daily routine, intelligent industrial sensors

that understand the difference between problems and normal

operation, and magical toys that can help kids learn in fun and

delightful ways.

ACKNOWLEDGMENT

We acknowledge the efforts by predecessor projects like Git,

GitHub, Eigen, ONNX, LLVM and many others to make

DNNC project a reality.

REFERENCES

[1] Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010).
http://eigen.tuxfamily.org

[2] Bai, Junjie and Lu, Fang and Zhang, Ke and others, ONNX 3.0: Open
Neural Network Exchange, 2019, https://github.com/onnx/onnx

[3] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normalization:

The missing ingredient for fast stylization. arXiv preprint
arXiv:1607.08022, 2017.

[4] Rohit Sharma et. Al, DNNC: Deep Neural Network Compiler, 2019
https://github.com/ai-techsystems/dnnCompiler

[5] Gemm
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Le
vel_3

[6] E. Fiesler, A. Choudry, and H. J. Caulfield, “Weight discretization
paradigm for optical neural networks,” in Optical Interconnections and

Networks, H. Bartelt, Ed. SPIE, Aug 1990:
https://doi.org/10.1117/12.20700

[7] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer, Efficient

Processing of Deep Neural Networks: A Tutorial and Survey,
Proceedings of the IEEE. 2017

http://eigen.tuxfamily.org/
https://github.com/onnx/onnx
https://github.com/ai-techsystems/dnnCompiler
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3

