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Abstract— Last few years have seen increasing upsurge in 

variety of neural network giving rise to dedicated hardware to meet 

their performance specification (i.e. latency and throughput). Every 

new dedicated hardware needs a compiler that can take a high-level 

specification of deep neural network and compile it into hardware 

specific machine code taking advantage of performance driven 

parallel features. Operators (aka layers) are hearts and mind of a 

deep neural network (DNN). In this paper we highlight design of 

operators as a pragmatic approach to compilation that enables the 

generation of highly optimized code for multiple targets. 

I. INTRODUCTION  

Applications of deep learning models have been pervasive 

in many branches of science ranging from difficult ones like 

rocket science and brain surgery to easy ones like image and 

speech recognition. Regardless of ease and orthogonality of 

these skills, structures and modularity of these networks 

remains remarkably homogeneous. Homogeneity of neural 

networks is brought about by handful (less than 200) of 

operators. In this paper, we discuss design, features and 

challenges in implementation of neural network operators. 

These operators are part of larger open source project Deep 

Neural Network Compiler currently under development [4]. 

dnnCompiler is targeted towards devices with small 

formfactor like microcontrollers, which are part of all sorts of 

household devices: think appliances, cars, and toys. In fact, 

there are around 30 billion microcontroller-powered devices 

produced each year. They're cheap, require very little energy, 

and are very reliable. 

In section II, we discuss overall design of dnn compiler 

with emphasis on operators. A small representative sample of 

operators was chosen for discussion. Section III after that 

discusses fusion, quantization, memory layout and scalability 

of the operators and their design. In the end, we present 

summary and future work of our project. 

OVERVIEW 

Popular deep neural networks with high accuracy have a 

high need for computational power for inferencing, that is 

generally not available on devices with low memory and low-

end CPUs. Industries spend a lot of monetary resources on the 

hardware. Addressing this particular issue, we came up with 

a solution– the Deep Neural Network Compiler. The compiler 

turns neural networks into an executable bundled with model 

parameters ready to run on embedded devices such as the 

raspberry pi, odroid, arduino, risc-V and other controllers 

with small form factor. The design of the Deep Neural 

Network Compiler is pretty straight forward, it uses 

ONNX3.0 [2] as a ProtoBuf format, which is directly 

translated into a high-level compute graph with operators as 

nodes and data flowing through these nodes as tensors. This 

paper attempts to highlight operator design supported by 

ONNX3.0 format [2]. These operators are being writing in 

C++ for performance reasons. They are also ported to python 

interface for quick testing and possibility of tuning compiler 

in to a full framework with python interface. To achieve 

performance objectives, we use a third-party linear algebra 

library Eigen [1] available under Mozilla Public License. This 

is a C++ template library for linear algebra: matrices, vectors, 

numerical solvers, and related algorithms to perform the 

Neural Network operations in a fast and an efficient manner. 

II. DESIGN 

Main difference between neural nets’ computation graph and 

traditional compiler IR graph is the number of high-level 

operators. Traditional compiler has a small and fixed set of 

operators, whereas neural nets’ computation graph operators 

are over 200 and new are being added every day. This dictates 

our design choice of adding new operators decentralized and 

independent of overall compiler design [4]. Addition of new 

operator is likely to invariably give rise to optimization 

opportunities not possible older set. This requirement 

demands flexibility in design optimizations passes of high-

level computation graphs, since addition of new nodes may 

demand new passes. In the next section, we discuss 3 

operators as a sample of approximately 150 operators 

supported in ONNX3.0 [2]. 

Design of operators in deep neural network compiler 

plays an important role in performance, memory, scalability 

and usability of DNN compiler. Addition of new operators 

sometimes comes with new attributes. In the overall scheme 

of things registration of new attribute must not come at the 

expense of invalidation of supported operators set or 

optimization passes. Similar to Tensorflow (with OpDef) and 

Caffe2 (with OperatorSchema), we also plan to provide 

registration scheme in future versions. 

Operator Instance Normalization 

Operator Instance Normalization [3] is expressed as 
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𝑦 = 𝑠𝑐𝑎𝑙𝑒.
𝑥 − 𝑚𝑒𝑎𝑛

√𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑒𝑝𝑠𝑖𝑙𝑜𝑛
+ 𝐵 

where mean and variance are computed per instance per 

channel (C). 

 Inputs  

a [float,double]: ND tensor ( Nx Cx D1xD2…Dk) 

Scale: 1D vector of dimension C. 

B: 1D vector of dimension C. 

Attr: epsilon – float 

In case variance goes to zero and to avoid division by zero. 

The formula for Mean is given by: 

𝜇 =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 

This can be calculated in a single pass through all the 

elements. 

The formula for Variance is given by: 

𝑉𝑎𝑟(𝑋) =
1

𝑛
∑(𝑥𝑖 − 𝜇)2

𝑛

𝑖=1

 

According to this Mean of the elements in channel is 

prerequisite for Variance calculation. 

A bit of mathematics reveals that mean is not required for 

Variance they can be calculated simultaneously. 

𝑉𝑎𝑟(𝑋) =
1

𝑛
∑(𝑥𝑖 − 𝜇)2

𝑛

𝑖=1

= ∑(𝑥𝑖
2 − 2𝜇𝑥𝑖 + 𝜇2)

𝑛

𝑖=1

=
1

𝑛
∑ 𝑥𝑖

2

𝑛

𝑖=1

−
2𝜇

𝑛
∑ 𝑥𝑖 +

𝑛𝜇2

𝑛

𝑛

𝑖=1

= (
1

𝑛
∑ 𝑥𝑖

2

𝑛

𝑖=1

) − 𝜇2 

And this formulation became part of dnn compiler operator 

implementation. The operator is O(n) where n = Number of 

elements in the tensor = N*C*D1…*Dk. 

Algorithm 

a.reshape([N,C,D1*D2…..*Dk]); 

channel_size = N*D1*D2…..*Dk 

sum=sq_sum=0 

For channel in channels 

 For element in channel 

  sum=sum+element 

  sq_sum=sq_sum+element*element 

 end 

 mean = sum/channel_size 

 var = sq_sum - mean*mean 

 For element in channel: 

element = scale[channel]*(element -

mean )/sqrt(var+epsilon)+B[channel] 

 end 

end 

Operator Gemm 

Gemm is called General Matrix Multiplication, is given as 

𝑌 =  𝛼𝐴𝐵 +  𝛽𝐶  
Where A and B can optionally be transposed or hermitian-

conjugated inside the routine and all three matrices may be 

strided. The ordinary matrix multiplication A B can be 

performed by setting α to one and C to an all-zeros matrix of 

the appropriate size. 

Inputs  

A of shape(M,K) if transA=0 or (K,M) if transA!=0 

B of shape(K,N) if transB=0 or (N,K) if transB!=0 

C of shape (M,N) 

Attributes  

transA (int) : defaut 0 

transB (int) : defaut 0 

alpha (float) : defaut 1.0 

beta (float) : defaut 1.0 

 

The matrix product C = AB (denoted without 

multiplication signs or dots) is defined to be the n × p matrix 

 

Such that  

 

Gemm is general matrix multiplication, which takes 4 

attributes, alpha and beta of type float, transA and transB of 

type int. transA and transB shows if matrix A and matrix B 

needs transposing before the operation. We have used Eigen 

matrix multiplication to achieve this operator. All tensor 

ranks should be of rank 2. Now apply this formula to compute 

the output Y 

 Y = alpha * A' * B' + beta * C ] 

where A' = transpose(A) if transA else A 

     B' = transpose(B) if transB else B 

Outputs 

 matrix Y of shape (M,N), the same shape of the input 

tensor. 

 Algorithm 

IF transA == 1 

 a = a.T 

IF transB == 1 

 b = b.T 

Y = alpha * (a * b) + beta * c 

Time complexity is less than O(n3) because Gemm is very 

data parallel as each of the n2 output elements is independent 

of the rest. 

Operator LpNormalization 

LpNormalization is a matrix normalization technique that 

takes axis and a constant p as an attribute which are of type 

int respectively. Axis defines in which particular axis of 

matrix we have to apply the normalization of the matrix and 

value of p provides the information of norm to be used. Only 

1 or 2 is supported as value for p. 

Inputs 

ND  matrix (type-float tensor, double tensor) 
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Attributes 

p (int): default 2 (onnx supports only 1 or 2) 

axis (int): default -1 (last axis i.e. 1 since axis of int type) 

For Normalization of matrix as per the p value taken as 

attribute will require computation of L1 norm (p=1) or L2 

norm (p=2) and formula to compute both is given by: 

L1 norm: 

L2 norm: 

Normalization helps in scaling of the input data and features. 

Algorithm: 

For elements along the axis 0 or 1: 

If p==1 

 For element in matrix: 

  sum=0 

  sum=sum+abs(element) 

 End 

 For element in matrix: 

  element=element/sum 

 End 

Else If p==2: 

 For element in matrix: 

  sum=0 

  sum=element*element 

 End 

 For element in matrix: 

  element=element/sqrt(sum) 

 End 

End 

Outputs 

ND matrix (type-float tensor,double tensor) after 

applying LpNormalization. 

Time complexity of the algorithm is O(n2) where n is no. 

of elements in the input matrix. 

Operator SoftMax 

SoftMax is a function that takes as input a vector of K real 

numbers, and normalizes it into a probability 

distribution consisting of K probabilities proportional to the 

exponentials of the input numbers. That is, prior to applying 

SoftMax , some vector components could be negative, or 

greater than one; and might not sum to 1; but after applying 

SoftMax , each component will be in the interval {0,1}, and 

the components will add up to 1, so that they can be 

interpreted as probabilities. Furthermore, the larger input 

components will correspond to larger probabilities. SoftMax 

is often used in neural networks, to map the non-normalized 

output of a network to a probability distribution over 

predicted output classes. 

Inputs -  

The input tensor that's coerced into a 2D matrix of size 

(ND) 

Output: 

 The output values with the same shape as input tensor. 

Attributes: 

 axis(int):default is 1 

Formula: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
exp (𝑥𝑖)

∑ exp (𝑥𝑗)𝑗
 

Diagrammatically: 

Algorithm: 

We apply the standard exponential function to each element 

Zi of the input vector Z and normalize these values by 

dividing by the sum of all these exponentials; this 

normalization ensures that the sum of the components of the 

output vector f(Z) is 1. (where f=sigmoid function). 

If axis==1: 

           For row in matrix: 

  sum=0 

  For col in matrix:   

      sum=sum+exp(matrix[row][col]) 

 End 

For col in matrix:  

    matrix[row][col] =(exp(matrix[row][col]))/sum 

 End 

         End 

 If axis==0: 

           For col in matrix: 

  sum=0 

  For row in matrix:   

      sum=sum+exp(matrix[col][row]) 

 End 

For row in matrix:  

    matrix[row][col] =(exp(matrix[col][row]))/sum 

 End 

          End 

III. FEATURES 

Operator Fusion 

Operator fusion [7] is a popular technique to minimize the 

off-chip data movement between layers by re-organizing two 

or more adjacent operators into one. DNNC employs loosly 

typed typed base operator with generic type information in 

the compute graph. This design makes it easy to fuse two or 

more operators painlessly with trivial operator type, tensor 

shape and rank-checking. 

https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Interval_(mathematics)
https://en.wikipedia.org/wiki/Artificial_neural_network
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A. Quantization 

Quantization, as introduced in [6] is a popular technique 

for deep learning models to help reduce power consumption, 

lower memory bandwidth, lower storage and higher 

performance. Low precision (normal precision uses FP32) 

can be used here, which uses FP16, INT8 and so on. Mixed 

precision utilizes both FP32 and FP16 model. And mixed 

precision is used as not all parameters or operators can be 

formatted in FP16, to maintain accuracy. No matter the data 

type, the DNNC can easily convert them, or we can change 

them manually also, as DNNC uses C++ template as the 

building block of its operators.  

B. Memory Layout 

There are many ways to represent the memory of a given 

tensor in the computational graph. The most common data 

layout choices are column major and row major [1]. 

Performance of DNN largely depends on memory operations 

like, fetch, store, transportation and others. As the old saying 

goes, a chain is as strong as its weakest link, memory or data 

tiling or alignment of a network dominates the performance 

of DNNs as measured by latency and throughput. We rely on 

Eigen [1] to improve tensorization, reduce temporaries, 

memory accesses and cache misses using latency hiding, 

scheduling and other optimizations. 

C. Scalability 

The operators are implemented with Eigen Library in 

C++, for performance reasons and memory optimization 

across different devices. The interface is done with swig, 

which helps us to build a C++ backend with python front end, 

for easier testing and wider usage. And it is fairly easy to add 

new operators as required. Add the operator in C++ which can 

be extended from baseOperator package and connect it with 

swig, which then can be accessed with python. 

SUMMARY 

By bringing deep learning models to tiny microcontrollers, 

we can boost the intelligence of billions of devices that we 

use in our lives, without relying on expensive hardware or 

reliable internet connections. Imagine smart appliances that 

can adapt to your daily routine, intelligent industrial sensors 

that understand the difference between problems and normal 

operation, and magical toys that can help kids learn in fun and 

delightful ways. 
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